Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
نویسندگان
چکیده
Cas9-based technologies rely on native elements of Type II CRISPR-Cas bacterial immune systems, including the trans-activating CRISPR RNA (tracrRNA), CRISPR RNA (crRNA), Cas9 protein, and protospacer-adjacent motif (PAM). The tracrRNA and crRNA form an RNA duplex that guides the Cas9 endonuclease to complementary nucleic acid sequences. Mechanistically, Cas9 initiates interactions by binding to the target PAM sequence and interrogating the target DNA in a 3'-to-5' manner. Complementarity between the guide RNA and the target DNA is key. In natural systems, precise cleavage occurs when the target DNA sequence contains a PAM flanking a sequence homologous to the crRNA spacer sequence. Currently, the majority of commercial Cas9-based genome-editing tools are derived from the Type II CRISPR-Cas system of Streptococcus pyogenes However, a diverse set of Type II CRISPR-Cas systems exist in nature that are potentially valuable for genome engineering applications. Exploitation of these systems requires prediction and validation of both native and engineered dual and single guide RNAs to drive Cas9 functionality. Here, we discuss how to identify the elements of these immune systems to develop next-generation Cas9-based genome-editing tools. We first discuss how to predict tracrRNA sequences and suggest a method for designing single guide RNAs containing only critical structural modules. We then outline how to predict the PAM sequence, which is crucial for determining potential targets for Cas9. Finally, validation of the system elements through transcriptome analysis and interference assays is essential for developing next-generation Cas9-based genome-editing tools.
منابع مشابه
Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملPrediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملStructure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage
CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single 'guide RNA' molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its pra...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملSynthesis a New Viral Base Vector Carrying Single Guide RNA (sgRNA) and Green Florescent Protein (GFP)
CRISPR/Cas9 system is a powerful gene editing tool in vivo and in vitro. Currently, CRISPR/Cas9 delivery cells or tissue with different vehicles are available, and Adeno- associated virus (AAV) in one of them. Due to AAV packaging size limitation, AAV base vectors that carry CRISPR/Cas9 system do not have florescent tag like GFP for simple detection and navigation of cells, containing AAV. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cold Spring Harbor protocols
دوره 2016 7 شماره
صفحات -
تاریخ انتشار 2016